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Abstract

Deep learning has shown great success in learning complex data patterns while
being able to make good predictions on unseen data points. However, the limited
understanding of these systems hinders further progress and application to several
domains in the real world. This predicament is exemplified by the time-consuming
model selection, privacy of training data, and explainability of obtained predic-
tions in the presence of adversarial examples and model perturbations.
In this proposal, we propose to study local neighborhood and graph based tools
to improve the analysis and design of deep learning. In particular, our approach
is aimed at characterizing the mappings induced by a deep neural network based
on the input-output geometry of the data used for learning them. Unlike previous
works that focus on mathematical modeling or approximations of the components
in neural networks, our goal is to develop and lay the foundation for a data-driven
language for describing and comparing deep learning models.
Concretely, we will pursue the following tasks. First, we will develop metrics that
take into account the local and global data geometry, rather than just considering
pairwise distances between points. Second, we will study the stability of deep
learning systems using proposed geometric metrics. In particular, we will charac-
terize the connections between optimization and data geometry, and its impact on
generalization. Finally, we will make use of the understandings gained to develop
approaches for the adaptivity and transferability of deep learning systems.
The proposed research will focus on theoretical and practical aspects of the design
and analysis of deep learning. For example, (i) on the theoretical front, we will de-
velop statistical results linking the developed geometric properties to that of data
distribution, number of parameters, and the size of training data; (ii) on the algo-
rithmic and practical front, we propose to develop efficient methods for obtaining
proposed geometric metrics such that it can be used for large scale parameter and
model selection without incurring severe computational overhead.

1 Introduction

In many tasks (e.g., sensing, anomaly detection, classification, and recommendation), systems are
increasingly designed by first collecting significant amounts of data and optimizing parameters of
deep learning models using this data. Further, choices such as architecture, learning paradigm, and
other components that make up these systems are based on end-to-end performance of the model on
training data. As these systems become more ubiquitous in our everyday interactions, characteriza-
tion and analysis of these systems are becoming a major challenge for safe and secure deployment.
Firstly, to ensure that a range of sectors and professions have the capacity to use deep learning in
ways that are useful for them, simple tools that are intuitive and reliable are required to help one
make informed and practical decisions. Secondly, for more experienced practitioners developing
these systems, we need provable techniques for understanding and designing better models.

Deep neural networks (DNN) are at the core of recent advances and transformative applications
in several domains. While state-of-the-art results have been achieved in these domains by using a



Figure 1: Left: Progressive transformation of input feature space over successive layers of a DNN.
The samples in the dataset are the same, and thus their attributes (e.g., labels) are the same, but their
position in feature space, and hence the graph and neighborhoods, changes as the model is opti-
mized for a particular task. Right: Data-driven view of local and global geometry of the embedding
manifold using proposed neighborhood and graph representation. Because graphs are intrinsically
independent of the exact data position, we can compare observations that are fundamentally hetero-
geneous (e.g., representations from different dimensional spaces or different models).

performance-driven approach, there are several trends that can cause concern about the reliability of
these models. First, an appropriate DNN model is closely tied to the dataset on which it is trained
and is selected with significant manual engineering [1]. Second, the large number of parameters
involved in DNN introduces stability issues for even small perturbations in their input. Third, it is
unclear if a smaller model trained for fewer epochs or with fewer data samples could have achieved
the same performance. Often, the main (and in some cases only) justification for a specific choice of
model in a system is simply that it works well (in terms of accuracy or other performance metrics)
with data selected for evaluation. While this is a very practical perspective that has led to significant
advances, a better understanding of the systems is needed, not only for applications where safety
is critical (e.g., self-driving vehicles) but also in order to understand limitations in the real world,
where it can be exposed to data very different from what was available at training.

The overarching goal of this project is to develop insights into the geometry of input-output map-
pings learned by DNN using data neighborhood and graph constructions that can approximate the
local and global geometry of the data (Figure 1). Our work is motivated by the observation that
while DNN involves complex non-linear mappings, the induced transformations and the structure of
the representation space can be inferred using data samples. Thus, instead of working with the high
dimensional data embedding, we will focus on the relative positions of the data embeddings ob-
tained in DNNs. This allows characterization of data geometry at any layer of the DNN and for the
development of techniques and metrics that can provide a quantitative understanding of the system.

One important feature of our approach is that it enables us to compare and contrast the space sur-
rounding a given data point in the embedded space corresponding to any layer of the network and at
any stage of training. This implies that (i) it is agnostic to specific training procedures, architecture,
and loss functions; (ii) it enables us to compare feature representations of the same data point using
different models, even if these representations have different dimensions; (iii) it can be applied to
the embeddings obtained with (out of domain or transfer) datasets not used for model training.

2 Data-driven geometrical analysis: Why now?

In the last decade, modern machine learning systems powered by deep learning have led to unprece-
dented success in many application domains. Three trends that have been driving progress in deep
learning: (i) algorithmic innovation that has become increasingly easy to integrate owing to the mod-
ularity of components in the model, (ii) the size of trainable model parameters that have far outpaced
the size of the data used to train the model, and (iii) the availability of massive amount of compute
resources to training these models. In this massively overparameterized regime, deep learning mod-
els have the capacity to (over)fit arbitrary training datasets including pure noise. Further, several
complex choices in the components and optimization procedures have made training to zero loss a
feasible target. Contrary to conventional wisdom where such interpolating models (models achiev-
ing zero or near-zero training error) were considered to be poor, some of the deep learning models
exhibit good generalization, i.e., prediction on unseen data [2, 3]. This phenomenon observed with
deep learning systems has presented a number of foundational challenges, requiring researchers to
revisit and propose new theories for understanding deep learning [4, 5].
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Existing theoretical tools, such as model capacity [6], algorithmic stability [7], and regularization
[8], predict performance on unseen test data to be close to that on training data, and are there-
fore unable to account for the unique challenges of overparameterized DNN models [4, 5]. More
recently, researchers have developed approximation using well studied mathematical tools (e.g.,
scattering-networks [9], sparse-convolutional networks [10], NTK [11]) as well as simplifications of
components involved in deep learning architectures (for e.g., convex relaxation of non-linear activa-
tion functions [12]) to draw similarities and better understand deep learning models. However, these
understandings only provide a coarse understanding, often constrained to a single design constraint,
with no direct extensions that are adaptable to the constantly evolving landscape of the deep learning
systems in terms of architectures, activation functions, optimization strategy, and loss functions.

Alternatively, we propose to understand deep learning using a data-driven perspective. In particular,
we explore the geometric properties of the function mapping, rather than considering mathematical
models that approximate the parameter or optimization landscape during training of the model [13,
14]. Our work aims to explore the manifold of the data and signals (attributes or functions associated
with the data) as observed by a complex learning model by using a graph-based representation of
the input and outputs. Our approach abstracts the architecture and components of the model and
provides a single framework for comparing and understanding various deep learning models.

Consider a deep learning model that is being trained on data. The dataset itself can be represented by
a graph, with the labels in the case of a supervised learning problem modeled as signals on the graph.
Then at each stage of the system optimization, data points in the original space are mapped to new
values (in some feature space) so that we can now associate a different graph to the same dataset.
This idea is illustrated in Figure 1, where we can see the same set of points evolving through different
graph representations until they are separable for a classification. Our proposed method allows us to
track the evolution of this mapping by measuring the properties of the graph and associated signals.

The idea of using data to understand a machine learning system is not new. In fact, accuracy and
other commonly used performance measures are data-driven metrics used to benchmark and com-
pare different machine learning models. Recently, this metric was shown to be effective for under-
standing the transfer performance on tasks with similar datasets as the training data, but fall short
in scenarios with largely different datasets [15, 16]. Further, these empirical evaluations abstract
the functional mapping of the model as well as the data used for the evaluation and thus cannot be
generalized. That is, we may be able to infer that the difference in accuracy between two systems
is significant on a given dataset, but the only way to say something about a model’s stability is to
characterize, at a much finer level, different regions of input space.

3 Proposal

The notion of manifold has been widely used in machine learning [18, 19, 20]. However, current
state-of-the-art methods for deep learning, which rely on high dimensional data representations,
have made it increasingly difficult to determine whether the common assumption that data belongs
to a smooth manifold does in fact lead to valid insights. Three main challenges arise: (i) developing
computationally efficient metrics to quantify local manifold structure, (ii) verifying that these met-
rics are reliable for very large datasets in high dimensional space, and (iii) incorporating knowledge
about the structure of complex feature extractors (e.g., layers and channel structures in deep neural
networks) into these metrics and their computation.

Our recently proposed non-negative kernel regression (NNK) graph construction [21, 22] provides
key elements to address these challenges and serves as the main building block for our proposed
manifold graph metrics (MGMs). NNK graphs are computed locally, with a modest increase in
complexity with respect to k-nearest neighbor (kNN) graphs. In contrast with kNN, where neigh-
bors are determined solely based on distance, NNK graphs connect neighboring points that are not
geometrically redundant. As a result, the NNK neighborhood for any data point can be described
by a polytope whose structure depends on the local data geometry (in particular the local dimension
of the data manifold) and is invariant to other factors (data density, number of neighbors chosen
to initialize kNN, etc.) [23]. While graph-based methods have been proposed to understand latent
spaces in DNNs [24], NNK graphs can provide new insights into how the data is organized, for e.g.,
across channel outputs at a given layer of a convolutional network [25].
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Figure 2: Quantifying rotational invariance/equivariance of various SSL models and its impact on
downstream transfer. Left For each model, we use as input of the DNN the validation set of Ima-
geNet as well as their augmented versions. The output of the backbone encoder is used to quantify
the properties of the manifold induced by the SSL algorithm. Specifically, we develop Manifold
Graph Metrics that capture manifold properties which are known to be crucial for transfer learn-
ing. The MGMs allow us to capture the specificity of each SSL model and to characterize their
transfer learning capability. Right Correlation plots between measured invariance and performance
of the SSL model in few-shot classification on datasets similar to ImageNet [15] and dense surface
normal estimation [17]. We extract the features corresponding to various ImageNet class images
and their rotated versions for a given SSL model and measure the NNK polytope diameter ∈ [0, 2]
for each input to quantify invariance (small diameter corresponds to collapse of the representations
indicative of invariance). As expected, SSL models with rotation invariance perform better in clas-
sification (negative correlation) but do worse in surface normal estimation (positive correlation).

We propose to develop MGMs that can be derived from NNK graphs. Some of these metrics will be
directly obtained from the set of NNK neighbors (e.g., total number of neighbors per node, diameter
or estimated volume of the polytope centered around the node) while others will be properties of
local tangent spaces estimated from vectors connecting data points and their NNK neighbors (e.g.,
dimension, orientation, curvature). Our proposed MGMs will allow us to understand quantitatively
the structure of the data manifold and its variation across layers, training epochs, and channels. For
example, by computing the properties of local tangent spaces and comparing them across points in
the dataset, we can assess the homogeneity of the data space. Changes in these local dimensions dur-
ing training have been shown to help to detect overfitting and provide insights about generalization
and explainability of the model [26, 27].

We propose to use MGMs to assess the quality of a model, including its stability, and robustness to
perturbations. To motivate this idea, notice that it is difficult in general to assess parameter stability
for complex DNNs: even if we use the same architecture, it is not trivial to compare two DNNs
that are trained with different subsets of training data. Instead, we propose to define a notion of
geometric stability which considers the geometry of the data manifold, quantified using the MGMs
under different training conditions. Thus, if x1,x2, . . .xN are data points, we do not require their
features to be the same for all trained models. Instead, we determine that the model is stable, and
hence reliable, if the local geometry of these points is consistent across all training instances.

Case study: Understanding self-supervised models using manifold properties To illustrate
the potential benefits of our approach we consider a case study focused on self-supervised learn-
ing (SSL), a set of techniques that have recently empowered vision models to learn meaningful
data representations from unlabeled data [28, 29]. SSL learns a representation that is aimed at be-
ing invariant to certain image augmentations (e.g., rotation, translation, color-jitter). These models
are then used as general-purpose feature extractors for downstream tasks and have been shown to
achieve competitive performance relative to to models trained specifically for a task [16]. However,
little is understood regarding the capacity of these models: (i) How invariant is the model to differ-
ent augmentations? and (ii) Which augmentations are crucial for SSL model transfer to a particular
task? Our proposed framework can help us demystify the architecture of SSL by shedding light on
the interplay between data augmentations, projectors, and the capacity of the feature extractor [30].
As an example, Figure 2 shows one of our MGM metrics that captures the rotation invariance of
SSL models and its impact on the transfer performance on two different tasks [31].

4



References
[1] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet classifiers generalize to ima-

genet?,” in International Conference on Machine Learning, pp. 5389–5400, PMLR, 2019.
[2] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning re-

quires rethinking generalization,” in International Conference on Learning Representations
(ICLR), 2017.

[3] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still)
requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3, pp. 107–115,
2021.

[4] M. Belkin, D. J. Hsu, and P. Mitra, “Overfitting or perfect fitting? Risk bounds for classification
and regression rules that interpolate,” in Advances in Neural Information Processing System,
2018.

[5] M. Belkin, A. Rakhlin, and A. B. Tsybakov, “Does data interpolation contradict statistical
optimality?,” in 22nd International Conference on Artificial Intelligence and Statistics, PMLR,
2019.

[6] M. Anthony, P. L. Bartlett, P. L. Bartlett, et al., Neural network learning: Theoretical founda-
tions, vol. 9. cambridge university press Cambridge, 1999.

[7] O. Bousquet and A. Elisseeff, “Algorithmic stability and generalization performance,” Ad-
vances in Neural Information Processing Systems, vol. 13, 2000.

[8] F. Bauer, S. Pereverzev, and L. Rosasco, “On regularization algorithms in learning theory,”
Journal of complexity, vol. 23, no. 1, pp. 52–72, 2007.

[9] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE transactions on
pattern analysis and machine intelligence, vol. 35, no. 8, pp. 1872–1886, 2013.

[10] V. Papyan, Y. Romano, and M. Elad, “Convolutional neural networks analyzed via convolu-
tional sparse coding,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 2887–
2938, 2017.

[11] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence and generalization
in neural networks,” Advances in neural information processing systems, vol. 31, 2018.

[12] S. Gunasekar, J. D. Lee, D. Soudry, and N. Srebro, “Implicit bias of gradient descent on linear
convolutional networks,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[13] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, “Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks,” IEEE Transactions on Information
Theory, vol. 65, no. 2, pp. 742–769, 2018.

[14] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang, “Fine-grained analysis of optimization and gen-
eralization for overparameterized two-layer neural networks,” in International Conference on
Machine Learning, pp. 322–332, PMLR, 2019.

[15] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models transfer better?,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–2671,
2019.

[16] L. Ericsson, H. Gouk, and T. M. Hospedales, “How well do self-supervised models transfer?,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5414–5423, 2021.

[17] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba, “Semantic un-
derstanding of scenes through the ade20k dataset,” International Journal of Computer Vision,
vol. 127, no. 3, pp. 302–321, 2019.

[18] M. Belkin, Problems of Learning on Manifolds. PhD thesis, The University of Chicago, 2003.
[19] A. Gadde, A. Anis, and A. Ortega, “Active semi-supervised learning using sampling theory for

graph signals,” in Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2014.
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